Paint

From Cargo Handbook - the world's largest cargo transport guidelines website
Infobox on Paint
Example of Paint
Paint-1.jpg
Facts
Origin -
Stowage factor (in m3/t) -
Humidity / moisture -
Ventilation -
Risk factors See text

Paint

Description

Paint is any liquid, liquefiable, or mastic composition which, after application to a substrate in a thin layer, is converted to a solid film. It is most commonly used to protect, colour or provide texture to objects.

Binder, vehicle, or resins
The binder, commonly called the vehicle, is the film-forming component of paint. It is the only component that must be present. Components listed below are included optionally, depending on the desired properties of the cured film.

The binder imparts adhesion and strongly influences such properties as gloss, durability, flexibility, and toughness.

Binders include synthetic or natural resins such as alkyds, acrylics, vinyl-acrylics, vinyl acetate/ethylene (VAE), polyurethanes, polyesters, melamine resins, epoxy, or oils. Binders can be categorized according to the mechanisms for drying or curing. Although drying may refer to evaporation of the solvent or thinner, it usually refers to oxidative cross-linking of the binders and is indistinguishable from curing. Some paints form by solvent evaporation only, but most rely on cross-linking processes.

Paints that dry by solvent evaporation and contain the solid binder dissolved in a solvent are known as lacquers. A solid film forms when the solvent evaporates, and because the film can re-dissolve in solvent, lacquers are unsuitable for applications where chemical resistance is important. Classic nitrocellulose lacquers fall into this category, as do non-grain raising stains composed of dyes dissolved in solvent and more modern acrylic-based coatings such as 5-ball Krylon aerosol. Performance varies by formulation, but lacquers generally tend to have better UV resistance and lower corrosion resistance than comparable systems that cure by polymerization or coalescence.

The paint type known as Emulsion in the UK and Latex in the USA is a water-borne dispersion of sub-micrometer polymer particles. These terms in their respective countries cover all paints that use synthetic polymers such as acrylic, vinyl acrylic (PVA), styrene acrylic, etc. as binders. The term "latex" in the context of paint in the USA simply means an aqueous dispersion; latex rubber from the rubber tree is not an ingredient. These dispersions are prepared by emulsion polymerization. Such paints cure by a process called coalescence where first the water, and then the trace, or coalescing, solvent, evaporate and draw together and soften the binder particles and fuse them together into irreversibly bound networked structures, so that the paint will not redissolve in the solvent/water that originally carried it. The residual surfactants in paint as well as hydrolytic effects with some polymers cause the paint to remain susceptible to softening and, over time, degradation by water. The general term of latex paint is usually used in the USA, while the term emulsion paint is used for the same products in the UK and the term latex paint is not used at all. Paints that cure by oxidative crosslinking are generally single package coatings. When applied, the exposure to oxygen in the air starts a process that crosslinks and polymerizes the binder component. Classic alkyd enamels would fall into this category. Oxidative cure coatings are catalyzed by metal complex driers such as cobalt naphthenate.

Paints that cure by polymerization are generally one or two package coatings that polymerize by way of a chemical reaction and which cure into a crosslinked film. Depending on composition they may need to dry first, by evaporation of solvent. Classic two package epoxies or polyurethanes would fall into this category.

There are paints called plastisols/organosols, which are made by blending PVC granules with a plasticiser. These are stoved and the mix coalesces.

Other films are formed by cooling of the binder. For example, encaustic or wax paints are liquid when warm, and harden upon cooling. In many cases, they will resoften or liquify if reheated.

Recent environmental requirements restrict the use of volatile organic compounds (VOCs), and alternative means of curing have been developed, particularly for industrial purposes. In UV curing paints, the solvent is evaporated first, and hardening is then initiated by ultraviolet light. In powder coatings there is little or no solvent, and flow and cure are produced by heating of the substrate after electrostatic application of the dry powder.

Diluent or Solvent
The main purposes of the diluent are to dissolve the polymer and adjust the viscosity of the paint. It is volatile and does not become part of the paint film. It also controls flow and application properties, and in some cases can affect the stability of the paint while in liquid state. Its main function is as the carrier for the non volatile components. To spread heavier oils (for example, linseed) as in oil-based interior house paint, a thinner oil is required. These volatile substances impart their properties temporarily—once the solvent has evaporated, the remaining paint is fixed to the surface.

This component is optional: some paints have no diluent.

Water is the main diluent for water-borne paints, even the co-solvent types.

Solvent-borne, also called oil-based, paints can have various combinations of organic solvents as the diluent, including aliphatics, aromatics, alcohols, ketones and white spirit. Specific examples are organic solvents such as petroleum distillate, esters, glycol ethers, and the like. Sometimes volatile low-molecular weight synthetic resins also serve as diluents.

Pigment or Filler
Pigments are granular solids incorporated in the paint to contribute colour. Fillers are granular solids incorporate to impart toughness, texture, give the paint special properties, or to reduce the cost of the paint. Alternatively, some paints contain dyes instead of or in combination with pigments.

Pigments can be classified as either natural or synthetic. Natural pigments include various clays, calcium carbonate, mica, silicas, and talcs. Synthetics would include engineered molecules, calcined clays, blanc fixe, precipitated calcium carbonate, and synthetic pyrogenic silicas.

Hiding pigments, in making paint opaque, also protect the substrate from the harmful effects of ultraviolet light. Hiding pigments include titanium dioxide, phthalo blue, red Iron Oxide, and many others.

Fillers are a special type of pigment that serve to thicken the film, support its structure and increase the volume of the paint. Fillers are usually cheap and inert materials, such as diatomaceous earth, talc, lime, barytes, clay, etc. Floor paints that will be subjected to abrasion may contain fine quartz sand as a filler. Not all paints include fillers. On the other hand, some paints contain large proportions of pigment/filler and binder.

Some pigments are toxic, such as the lead pigments that are used in lead paint. Paint manufacturers began replacing white lead pigments with titanium white (titanium dioxide), before lead was banned in paint for residential use in 1978 by the US Consumer Product Safety Commission. The titanium dioxide used in most paints today is often coated with silica/alumina/zirconium for various reasons, such as better exterior durability, or better hiding performance (opacity) promoted by more optimal spacing within the paint film.

Additives
Besides the three main categories of ingredients, paint can have a wide variety of miscellaneous additives, which are usually added in small amounts, yet provide a significant effect on the product. Some examples include additives to modify surface tension, improve flow properties, improve the finished appearance, increase wet edge, improve pigment stability, impart antifreeze properties, control foaming, control skinning, etc. Other types of additives include catalysts, thickeners, stabilizers, emulsifiers, texturizers, adhesion promoters, UV stabilizers, flatteners (de-glossing agents), biocides to fight bacterial growth, and the like.

Additives normally do not significantly alter the percentages of individual components in a formulation.

The main reasons of paint failure after application on surface are the applicator and improper treatment of surface. Application Defects can be attributed to:

  • Dilution - This usually occurs when the dilution of the paint is not done as per manufacturers recommendation. There can be a case of over dilution and under dilution, as well as dilution with the incorrect diluent.
  • Contamination - Foreign contaminants added without the manufacturers consent which results in various film defects.
  • Peeling/Blistering - Most commonly due to improper surface treatment before application and inherent moisture/dampness being present in the substrate.
  • Chalking - Chalking is the progressive powdering of the paint film on the painted surface. The primary reason for the problem is polymer degradation of the paint matrix due to exposure of UV radiation in sunshine and condensation from dew. The degree of chalking varies as epoxies react quickly while acrylics and polyurethanes can remain unchanged for long periods. The degree of chalking can be assessed according to International Standard ISO 4628 Part 6 or 7 or American Society of Testing and Materials(ASTM) Method D4214 (Standard Test Methods for Evaluating the Degree of Chalking of Exterior Paint Films).
  • Cracking - Cracking of paint film is due to the unequal expansion or contraction of paint coats. It usually happens when the coats of the paint are not allowed to cure/dry completely before the next coat is applied. The degree of cracking can be assessed according to International Standard ISO 4628 Part 4 or ASTM Method D661 (Standard Test Method for Evaluating Degree of Cracking of Exterior Paints).
  • Erosion - Erosion is very quick chalking. It occurs due to external agents like air,water etc. It can be evaluated using ASTM Method ASTM D662 (Standard Test Method for Evaluating Degree of Erosion of Exterior Paints).
  • Blistering - Blistering is due to improper surface exposure of paint to strong sunshine. The degree of blistering can be assessed according to ISO 4628 Part 2 or ASTM Method D714 (Standard Test Method for Evaluating Degree of Blistering of Paints).

Application

Paint can be applied as a solid, a gaseous suspension (aerosol) or a liquid. Techniques vary depending on the practical or artistic results desired.

As a solid (usually used in industrial and automotive applications), the paint is applied as a very fine powder, then baked at high temperature. This melts the powder and causes it to adhere to the surface. The reasons for doing this involve the chemistries of the paint, the surface itself, and perhaps even the chemistry of the substrate (the object being painted). This is called "powder coating" an object.

As a gas or as a gaseous suspension, the paint is suspended in solid or liquid form in a gas that is sprayed on an object. The paint sticks to the object. This is called "spray painting" an object.

Shipment / Storage / Risk factors

Normally carried in various sized tins and/or drums with smaller sized tins being packing in cartons and/or open crates. Oil based paints are flammable and are subject to the IMDG Code.

Heavy handling in transit can cause bursting of drum heads or leakage by way of tin lids. Apart from loss of contents, serious damage can be caused to adjacent cargo. Any leakage normally permits entry of air to paint content, with resultant evaporation of solvents and contents within the tin. Minimising any loss following damage to container is dependent on type of paint and condition, but remedial action should be taken speedily as delay will cause further loss by evaporation and/or hardening.

All types of paints, oil or emulsion, are liable to damage if stowed too near boiler or hot bulkheads, where high temperatures will accelerate putrefaction and/or breaking of emulsion; likewise, stowage where the material is subjected to extreme cold when the emulsion may break, the oil and water being not remiscible.

In the event of spillage of contents near or on adjacent cargo, particular care should be exercised to protect against pollution and poisoning by lead or other chemical content and it is essential to ensure that all safeguards are taken to minimize fire hazard.

Reference is made to the relevant IMO regulations on hazardous cargo.