Difference between revisions of "Pig Iron"

From Cargo Handbook - the world's largest cargo transport guidelines website
m (Description)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
{{Infobox_Metals
 
{{Infobox_Metals
| image                              = picturefollow.jpg
+
| image                              = Pig_iron-1.jpg
 
| origin                              = -
 
| origin                              = -
| stowage factor                      = -
+
| stowage factor                      = 0,28 m<sup>3</sup>/t(bulk)
 
| humidity and moisture              = -
 
| humidity and moisture              = -
| ventilation                        = -
+
| ventilation                        = No special requirements
| risk factors                        = -
+
| risk factors                        = See text
 
}}
 
}}
 +
__TOC__
 
==Description==
 
==Description==
 +
Pig iron is the intermediate product of smelting iron ore with a high-carbon fuel such as coke, usually with [[limestone]] as a flux. [[Charcoal]] and anthracite have also been used as fuel. Pig iron has a very high carbon content, typically 3.5–4.5% which makes it very brittle and not useful directly as a material except for limited applications.<br><br>
 +
The traditional shape of the molds used for these ingots was a branching structure formed in [[sand]], with many individual ingots at right angles to a central channel or runner. Such a configuration is similar in appearance to a litter of piglets suckling on a sow. When the metal had cooled and hardened, the smaller ingots (the pigs) were simply broken from the much thinner runner (the sow), hence the name pig iron. As pig iron is intended for remelting, the uneven size of the ingots and inclusion of small amounts of sand was insignificant compared to the ease of casting and of handling.<br><br>
 +
Traditionally pig iron would be worked into wrought iron in finery forges, and later puddling furnaces, more recently into steel. In these processes, pig iron is melted and a strong current of air is directed over it while it is being stirred or agitated. This causes the dissolved impurities (such as silicon) to be thoroughly oxidized. An intermediate product of puddling is known as refined pig iron, finers metal, or refined iron.<br><br>
 +
Pig iron can also be used to produce gray iron. This is achieved by remelting pig iron, often along with substantial quantities of steel and scrap iron, removing undesirable contaminants, adding alloys, and adjusting the carbon content. Some pig iron grades are suitable for producing ductile iron. These are high purity pig irons and depending on the grade of ductile iron being produced these pig irons may be low in the elements silicon, manganese, sulfur and phosphorus. These types of pig irons are useful to dilute all elements in a ductile iron charge (except carbon) which may be harmful to the ductile iron process.<br><br>
 +
Today, pig iron is typically poured directly out of the bottom of the blast furnace through a trough into a ladle car for transfer to the steel mill in mostly liquid form, referred to as hot metal. The hot metal is then charged into a steelmaking vessel to produce steel, typically with an electric arc furnace or basic [[oxygen]] furnace, by burning off the excess carbon in a controlled fashion and adjusting the alloy composition. Earlier processes for this included the finery forge, the puddling furnace, the Bessemer process, and open hearth furnace.<br><br>
 +
Modern steel mills and direct-reduction iron plants transfer the molten iron to a ladle for immediate use in the steel making furnaces or cast it into pigs on a pig-casting machine for reuse or resale. Modern pig casting machines produce stick pigs, which break into smaller 4–10 kg pieces at discharge.<br><br>
 +
 +
==Shipment / Storage==
 +
Consult the IMSBC Code (International Maritime Solid Bulk Cargoes Code) for overseas transport advice.<br><br>
 +
==Risk factors==
 +
In transit there may be loss in weight due to scaling and shedding of foreign matter.
 +
No special hazards. This cargo is non-combustible or has a low fire-risk.
 +
  
  
 
[[Category:Products]]
 
[[Category:Products]]
 
[[Category:Metals and steel]]
 
[[Category:Metals and steel]]

Latest revision as of 15:40, 14 January 2021

Infobox on Pig Iron
Example of Pig Iron
Pig iron-1.jpg
Facts
Origin -
Stowage factor (in m3/t) 0,28 m3/t(bulk)
Humidity / moisture -
Ventilation No special requirements
Risk factors See text

Pig Iron

Description

Pig iron is the intermediate product of smelting iron ore with a high-carbon fuel such as coke, usually with limestone as a flux. Charcoal and anthracite have also been used as fuel. Pig iron has a very high carbon content, typically 3.5–4.5% which makes it very brittle and not useful directly as a material except for limited applications.

The traditional shape of the molds used for these ingots was a branching structure formed in sand, with many individual ingots at right angles to a central channel or runner. Such a configuration is similar in appearance to a litter of piglets suckling on a sow. When the metal had cooled and hardened, the smaller ingots (the pigs) were simply broken from the much thinner runner (the sow), hence the name pig iron. As pig iron is intended for remelting, the uneven size of the ingots and inclusion of small amounts of sand was insignificant compared to the ease of casting and of handling.

Traditionally pig iron would be worked into wrought iron in finery forges, and later puddling furnaces, more recently into steel. In these processes, pig iron is melted and a strong current of air is directed over it while it is being stirred or agitated. This causes the dissolved impurities (such as silicon) to be thoroughly oxidized. An intermediate product of puddling is known as refined pig iron, finers metal, or refined iron.

Pig iron can also be used to produce gray iron. This is achieved by remelting pig iron, often along with substantial quantities of steel and scrap iron, removing undesirable contaminants, adding alloys, and adjusting the carbon content. Some pig iron grades are suitable for producing ductile iron. These are high purity pig irons and depending on the grade of ductile iron being produced these pig irons may be low in the elements silicon, manganese, sulfur and phosphorus. These types of pig irons are useful to dilute all elements in a ductile iron charge (except carbon) which may be harmful to the ductile iron process.

Today, pig iron is typically poured directly out of the bottom of the blast furnace through a trough into a ladle car for transfer to the steel mill in mostly liquid form, referred to as hot metal. The hot metal is then charged into a steelmaking vessel to produce steel, typically with an electric arc furnace or basic oxygen furnace, by burning off the excess carbon in a controlled fashion and adjusting the alloy composition. Earlier processes for this included the finery forge, the puddling furnace, the Bessemer process, and open hearth furnace.

Modern steel mills and direct-reduction iron plants transfer the molten iron to a ladle for immediate use in the steel making furnaces or cast it into pigs on a pig-casting machine for reuse or resale. Modern pig casting machines produce stick pigs, which break into smaller 4–10 kg pieces at discharge.

Shipment / Storage

Consult the IMSBC Code (International Maritime Solid Bulk Cargoes Code) for overseas transport advice.

Risk factors

In transit there may be loss in weight due to scaling and shedding of foreign matter. No special hazards. This cargo is non-combustible or has a low fire-risk.